Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 9, 2026
- 
            Additive manufacturing (AM) has the potential to improve productivity especially processing time, cost and surface roughness. In similar lines, part separation for assembly-based design in additive manufacturing can help in improving productivity. This paper discusses an optimization technique for part separation in assembly based part design in additive manufacturing. The technique improves productivity by decreasing the processing time of printed parts, which is the sum of the build time and the assembly time. The technique uses optimal cutting planes for part separation that has distinct advantages compared to random cutting planes. The work discusses a Genetic Algorithm (GA) technique for part separation using planar cuts. The optimization technique provides the optimal number of parts for assembly and their corresponding build orientations for the minimum processing time. Three examples have been provided to demonstrate the application of the proposed method. Finally, the results from two examples are compared to the already established hill climbing optimization method for part separation.more » « less
- 
            Prior studies have already predicted that enforcement of IP on the additive manufacturing industry will not be successful due to the widespread use of file-sharing technologies, similar to the entertainment and music industry. This paper discusses the capabilities of Blockchain technology for protecting IP in the design and manufacturing area. A conceptual framework for a digital platform is defined in this paper and further, a survey study of engineering design and manufacturing students has been conducted to identify the main motivation behind developing these platforms and the types of features that should be included in Blockchain-based IP platforms for asset protection, particularly for product design. In addition, respondents provided their opinions about the type of industry that might be affected more by the threat of counterfeiting products and the role of Blockchain-based IP systems on the growth and development of innovation.more » « less
- 
            Additive Manufacturing (AM) provides the advantage of producing complex shapes that are not possible through traditional cutting processes. Along with this line, assembly-based part design in AM creates some opportunities for productivity improvement. This paper proposes an improved optimization algorithm for part separation (OAPS) in assembly-based part design in additive manufacturing. For a given object, previous studies often provide the optimal number of parts resulting from cutting processes and their corresponding orientation to obtain the minimum processing time. During part separation, the cutting plane direction to generate subparts for assembly was often selected randomly in previous studies. The current work addresses the use of random cutting planes for part separation and instead uses the hill climbing optimization technique to generate the cutting planes to separate the parts. The OAPS provides the optimal number of assemblies and the build orientation of the parts for the minimum processing time. Two examples are provided to demonstrate the application of OAPS algorithm.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available